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ABSTRACT

A new nonlinear electromagnetic wave mode in a magnetized plasma is predicted. Its existence
depends on the interaction of an intense circularly polarized electromagnetic wave with a plasma,
where quantum electrodynamical photon–photon scattering is taken into account. This scattering
gives rise to a new coupling between the matter and the radiation. Specifically, we consider an
electron–positron plasma, and show that the propagation of the new mode is admitted. It could be
of significance in pulsar magnetospheres, and result in energy transport between the pulsar poles.

Subject headings: Plasmas — pulsars: general — stars: neutron — waves

Astrophysical environments can be most violent and
energetic. Physics considered ‘exotic’ in Earth based
laboratory applications can be common throughout our
Universe, and sometimes even vital for the existence of
certain observed phenomena. Pulsars, surrounded by
strong magnetic fields, are most prolific sources of ex-
otic physics. Quantum electrodynamics (QED) is an in-
dispensable explanatory model for much of the observed
pulsar phenomena. Scattering of photons off photons is
predicted by QED, and it can be a prominent compo-
nent of pulsar physics, since pulsars offer the necessary
energy scales for such scattering to occur. Related to the
scattering of photons is the concept of photon splitting
in strong magnetic fields (Adler 1971). It has been sug-
gested that such effects could be important in explaining
the radio silence of magnetars (Kouveliotou 1998; Baring
& Harding 2001). In the present Letter we will point out
the existence of a new electromagnetic wave that may
exist in pulsar magnetospheres, due to the interaction of
photons with the quantum vacuum. A discussion of the
properties of this electromagnetic wave using parameters
relevant to strongly magnetized pulsars will be given.

The weak field theory of photon–photon scattering can
be formulated in terms of the effective Lagrangian den-
sity

L = L0 + LHE, (1)

where L0 = − 1
4ǫ0FabF

ab = 1
2ǫ0(E

2 − c2B2) is the clas-
sical free field Lagrangian, and

LHE = κǫ20

[
4
(

1
4FabF

ab
)2

+ 7
(

1
4FabF̂

ab
)2
]

, (2)

is the Heisenberg–Euler correction (Heisenberg & Eu-

ler 1936; Schwinger 1951), where F̂ab = 1
2ǫabcdF

cd, and
1
4 F̂abF

ab = −cE · B. Here κ ≡ 2α2
~

3/45m4
ec

5 ≈

1.63 × 10−30 ms2/kg, α is the fine-structure constant, ~

is the Planck constant, me is the electron mass, and c is
the speed of light in vacuum. With Fab = ∂aAb − ∂bAa,
Ab being the four-potential, we obtain, from the Euler–
Lagrange equations, the field equations ∂b[∂L /∂Fab] =
0, i.e. (see, e.g. Shukla et al. 2004)

∂bF
ab = 2ǫ0κ∂b

[
(FcdF

cd)F ab + 7
4 (FcdF̂

cd)F̂ ab
]

+ µ0j
a,

(3)

where ja is the four current.
For a circularly polarized wave E0 = E0(x̂±iŷ) exp(ik·

x − iωt) propagating along a constant magnetic field
B0 = B0ẑ, the invariants satisfy

FcdF
cd = −2E2

0

(
1 −

k2c2

ω2

)
+ 2c2B2

0 and FcdF̂
cd = 0,

(4)
where k is the wave number and ω the frequency of the
circularly polarized electromagnetic wave. Thus, Eq. (3)
can be written as

2Aa = −4ǫ0κ

[
E2

0

(
1 −

k2c2

ω2

)
− c2B2

0

]
2Aa + µ0j

a,

(5)
in the Lorentz gauge, and 2 = ∂a∂a. For circularly po-
larized electromagnetic waves propagating in a magne-
tized cold multicomponent plasma, the four current can
be ‘absorbed’ in the wave operator on the left-hand side
by the replacement

2 → −D(ω, k), (6)

where D is the plasma dispersion function, given by (see,
e.g. Stenflo (1976) and Stenflo & Tsintsadze (1979))

D(ω, k) = k2c2 − ω2 +
∑

j

ωω2
pj

ωγj ± ωcj
, (7)

where the sum is over the plasma particle species j,

ωcj =
qjB0

m0j
and ωpj =

(
n0jq

2
j

ǫ0m0j

)1/2

, (8)

is the gyrofrequency and plasma frequency, respectively,
and

γj = (1 + ν2
j )1/2, (9)

is the the gamma factor of species j, with νj satisfying

ν2
j =

(
eE0

cm0j

)2 1 + ν2
j

[ω(1 + ν2
j )1/2 ± ωcj ]2

. (10)

Here n0j denotes particle density in the laboratory frame
and m0j particle rest mass.

Introducing the Schwinger critical field ES =
m2

ec
3/e~ ∼ 1018 V/m, the dispersion relation, obtained
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from Eq. (5), reads

D(ω, k) =
4α

45π
(ω2 − k2c2)

×

[(
E0

ES

)2
ω2 − k2c2

ω2
−

(
cB0

ES

)2
]

. (11)

We note that as the plasma density goes to zero, the
effect due to photon–photon scattering, as given by the
right-hand side of Eq. (11), vanishes, since then ω2 −
k2c2 = 0

Next, we focus on mode propagation in an ultra-
relativistic electron–positron plasma (γe ≫ 1), where the
two species have the same number density n0. Then Eq.
(11) gives

k2c2 − ω2 ±
ωω2

pe

ωE

=
4α

45π

[(
E0

ES

)2
ω2 − k2c2

ω2
−

(
cB0

ES

)2
]

(ω2 − k2c2).(12)

Following Stenflo & Tsintsadze (1979), we have defined
ωE = eE0/cm0e.

Looking for low-frequency modes, we now use the ap-
proximation ω ≪ kc, at which Eq. (12) gives

k2c2

ω2
≈

4α

45π

[(
E0

ES

)2
k2c2

ω2
+

(
cB0

ES

)2
]

k2c2

ω2
∓

ω2
pe

ωωE
.

(13)
It is sometimes advantageous to use the relation ωE =
ωe(E0/ES), where ωe = mec

2/~ is the Compton fre-
quency, to write Eq. (13) as

k2c2

ω2
≈

4α

45π

[(
E0

ES

)2
k2c2

ω2
+

(
cB0

ES

)2
]

k2c2

ω2
∓

ω2
pe

ωωe

ES

E0
.

(14)
Using the dispersion relation (13) the group velocity

vg ≡ dω/dk is

vg =

1 −
4α

45π

(
cB0

ES

)2

±
2vp

kc2

ω2
pe

ωE

1 −
4α

45π

(
cB0

ES

)2

±
3vp

2kc2

ω2
pe

ωE

vp, (15)

where vp ≡ ω/k is the phase velocity.
Pulsar magnetospheres exhibit extreme field strengths

in a highly energetic pair plasma. Ordinary neutron
stars have surface magnetic field strengths of the order
of 106 − 109 T, while magnetars can reach 1010 − 1011 T
(Kouveliotou 1998), coming close to, or even surpassing,
energy densities ǫ0E

2
S corresponding to the Schwinger

limit. Such strong fields will make the vacuum fully non-
linear, due to the excitation of virtual pairs. Photon
splitting can therefore play a significant role in these ex-
treme systems (Harding 1991; Baring & Harding 2001).

The emission of short wavelength photons due to the
acceleration of plasma particles close to the polar caps
results in production of electrons and positrons as the
photons propagate through the pulsar intense magnetic
field (Beskin 1993). Given the Goldreich–Julian density
nGJ = 7 × 1015(0.1 s/P )(B/108 T) m−3, where P is the
pulsar period and B the pulsar magnetic field, the pair
plasma density is expected to satisfy n0 = MnGJ , where
M is the multiplicity (Beskin 1993; Luo et al. 2002).
Moderate estimates give M = 10 (Luo et al. 2002). Thus,
the density in a pulsar pair plasma can be of the order
1018 m−3. The plasma experiences a relativistic factor
∼ 102 − 103 (Asseo 2003). On the other hand, the pri-
mary beam will have n0 ∼ nGJ and γ ∼ 106−107 (Asseo
2003).

For background fields strengths in the lower range
given above (corresponding to pulsars rather than mag-
netars), cB0 ≪ ES , and we therefore drop the term pro-
portional to B2

0 in Eq. (14). Next, using the normalized
quantities Ω = ωωe/ω2

pe, K = (4α/45π)−1/2kcωe/ω2
pe

and E = (4α/45π)E0/ES , the dispersion relation (14)
reads

Ω2 = E2K2 ∓
Ω3

EK2
. (16)

This dispersion relation describe three different modes,
two with + polarization and one with − polarization.
The normalized frequency as a function of K and E is
shown in Fig. 1. We note that for K ≪ 1, the disper-
sion relation (16) agrees with that of Stenflo &Tsintsadze
(1979), whereas in the opposite limit K ≫ 1, the QED
term in (16) is dominating. For the given density, the lat-
ter regime applies, except for extremely long wavelengths
(> 108 m), and thus we note that QED effects are highly
relevant for the propagation of these modes in the pulsar
environment. For small K there is only one mode, but as
seen from the second and third panels of Fig. 1, two new
modes appear for K & 2.6. Thus for large K, applicable
in the pulsar environment, there are three low-frequency
modes (ω ≪ kc) that depend on nonlinear QED effects
for their existence. Using cB0 ≪ ES , the expression (15)
for the group velocity becomes

dΩ

dK
=

Ω ± 2Ω2/EK2

Ω ± 3Ω2/2EK2

Ω

K
, (17)

and thus we see that the propagation speed depends non-
linearly on the plasma parameters. We suggest that the
three new modes presented above can contribute to an
understanding of the very complicated energy transport
phenomena taking place in the accretion discs of pulsars.

In summary, we have reported the existence of a new
electromagnetic wave in pulsar magnetospheres. The dis-
persion relation of the wave has been presented, and
analysed using relevant astrophysical parameters. Ap-
plications to pulsar magnetoplasmas have been pointed
out.
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Fig. 1.— Dispersion surfaces Ω = Ω(K, E) as given by Eq. (16). The first panel corresponds to the − sign in Eq. (16), and exists for
all K and E. The second panel shows the fast + polarized mode, which exists for K & 2.6. The third and final panels depict the slow +
polarized mode, also for K & 2.6.
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